Amytracker - References
2024
-
Pinzi, L., Conze, C., Bisi, N., Torre, G. D., Soliman, A., Monteiro-Abreu, N., Trushina, N. I., Krusenbaum, A., Dolouei, M. K., Hellwig, A., Christodoulou, M. S., Passarella, D., Bakota, L., Rastelli, G., & Brandt, R. (2024). Quantitative live cell imaging of a tauopathy model enables the identification of a polypharmacological drug candidate that restores physiological microtubule interaction. Nature Communications, 15(1), 1679. https://doi.org/10.1038/s41467-024-45851-6
-
Šulskis, D., Žiaunys, M., Sakalauskas, A., Sniečkute, R., & Smirnovas, V. (2024). Formation of amyloid fibrils by the regulatory 14-3-3ζ protein. Open Biology, 14(1). https://doi.org/10.1098/rsob.230285
-
Dranseike, D., Ota, Y., Edwardson, T. G. W., Guzzi, E. A., Hori, M., Nakic, Z. R., Deshmukh, D. v., Levasseur, M. D., Mattli, K., Tringides, C. M., Zhou, J., Hilvert, D., Peters, C., & Tibbitt, M. W. (2024). Designed modular protein hydrogels for biofabrication. Acta Biomaterialia, 177, 107–117. https://doi.org/10.1016/J.ACTBIO.2024.02.019
-
Balana, A. T., Mahul-Mellier, A. L., Nguyen, B. A., Horvath, M., Javed, A., Hard, E. R., Jasiqi, Y., Singh, P., Afrin, S., Pedretti, R., Singh, V., Lee, V. M. Y., Luk, K. C., Saelices, L., Lashuel, H. A., & Pratt, M. R. (2024). O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology. Nature Chemical Biology, 20(5), 646–655. https://doi.org/10.1038/s41589-024-01551-2
-
Kreutzer, A. G., Parrocha, C. M. T., Haerianardakani, S., Guaglianone, G., Nguyen, J. T., Diab, M. N., Yong, W., Perez-Rosendahl, M., Head, E., & Nowick, J. S. (2024). Antibodies Raised Against an Aβ Oligomer Mimic Recognize Pathological Features in Alzheimer’s Disease and Associated Amyloid-Disease Brain Tissue. ACS Central Science, 10(1), 104–121. https://doi.org/10.1021/acscentsci.3c00592
-
Raymundo, J. R., Zhang, H., Smaldone, G., Zhu, W., Daly, K. E., Glennon, B. J., Pecoraro, G., Salvatore, M., Devine, W. A., Lo, C. W., Vitagliano, L., & Marneros, A. G. (2024). KCTD1/KCTD15 complexes control ectodermal and neural crest cell functions, and their impairment causes aplasia cutis. The Journal of Clinical Investigation, 134(4). https://doi.org/10.1172/JCI174138
-
Morelli, C., Faltova, L., Capasso Palmiero, U., Makasewicz, K., Papp, M., Jacquat, R. P. B., Pinotsi, D., & Arosio, P. (2024). RNA modulates hnRNPA1A amyloid formation mediated by biomolecular condensates. Nature Chemistry, 16(7), 1052–1061. https://doi.org/10.1038/s41557-024-01467-3
-
Kitamura, A., Fujimoto, A., Kawashima, R., Lyu, Y., Sasaki, K., Hamada, Y., Moriya, K., Kurata, A., Takahashi, K., Brielmann, R., Bott, L. C., Morimoto, R. I., & Kinjo, M. (2024). Hetero-oligomerization of TDP-43 carboxy-terminal fragments with cellular proteins contributes to proteotoxicity. Communications Biology, 7(1). https://doi.org/10.1038/s42003-024-06410-3
-
de Oliveira, D. H., Gowda, V., Sparrman, T., Gustafsson, L., Sanches Pires, R., Riekel, C., Barth, A., Lendel, C., & Hedhammar, M. (2024). Structural conversion of the spidroin C-terminal domain during assembly of spider silk fibers. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-49111-5
-
Sun, H., Yang, B., Li, Q., Zhu, X., Song, E., Liu, C., Song, Y., & Jiang, G. (2024). Polystyrene nanoparticles trigger aberrant condensation of TDP-43 and amyotrophic lateral sclerosis-like symptoms. Nature Nanotechnology. https://doi.org/10.1038/s41565-024-01683-5
-
Li, B., Suresh, P., Brelstaff, J., Kedia, S., Bryant, C. E., & Klenerman, D. (2024). The delayed kinetics of Myddosome formation explains why amyloid-beta aggregates trigger Toll-like receptor 4 less efficiently than lipopolysaccharide. eLife, 13, RP92350. https://doi.org/10.7554/eLife.92350
-
Bacioglu, M., Schweighauser, M., Gray, D., Lövestam, S., Katsinelos, T., Quaegebeur, A., van Swieten, J., Jaunmuktane, Z., Davies, S. W., Scheres, S. H. W., Goedert, M., Ghetti, B., & Spillantini, M. G. (2024). Cleaved TMEM106B forms amyloid aggregates in central and peripheral nervous systems. Acta Neuropathologica Communications, 12(1). https://doi.org/10.1186/s40478-024-01813-z
-
Eltom, K., Mothes, T., Libard, S., Ingelsson, M., & Erlandsson, A. (2024). Astrocytic accumulation of tau fibrils isolated from Alzheimer’s disease brains induces inflammation, cell-to-cell propagation and neuronal impairment. Acta Neuropathologica Communications, 12(1). https://doi.org/10.1186/s40478-024-01745-8
2023
-
Arad, E., Pedersen, K. B., Malka, O., Mambram Kunnath, S., Golan, N., Aibinder, P., Schiøtt, B., Rapaport, H., Landau, M., & Jelinek, R. (2023). Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-43624-1
-
Juliani do Amaral, M., Mohapatra, S., Ribeiro Passos, A., Sousa Lopes da Silva, T., Sampaio Carvalho, R., da Silva Almeida, M., Sá Pinheiro, A., Wegmann, S., & Cordeiro, Y. (2023). Copper drives prion protein phase separation and modulates aggregation. Science Advances, 9, eadi7347. https://doi.org/10.1126/sciadv.adi7347
-
Chandhok, S., Pereira, L., Momchilova, E. A., Marijan, D., Zapf, R., Lacroix, E., Kaur, A., Keymanesh, S., Krieger, C., & Audas, T. E. (2023). Stress-mediated aggregation of disease-associated proteins in amyloid bodies. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-41712-2
-
Chia, S., Faidon Brotzakis, Z., Horne, R. I., Possenti, A., Mannini, B., Cataldi, R., Nowinska, M., Staats, R., Linse, S., Knowles, T. P. J., Habchi, J., & Vendruscolo, M. (2023). Structure-Based Discovery of Small-Molecule Inhibitors of the Autocatalytic Proliferation of α-Synuclein Aggregates. Mol. Pharmaceutics, 20, 183–193. https://doi.org/10.1021/acs.molpharmaceut.2c00548
-
Frenkel, A., Zecharia, E., Gómez-Pérez, D., Sendersky, E., Yegorov, Y., Jacob, A., Benichou, J. I. C., Stierhof, Y. D., Parnasa, R., Golden, S. S., Kemen, E., & Schwarz, R. (2023). Cell specialization in cyanobacterial biofilm development revealed by expression of a cell-surface and extracellular matrix protein. Npj Biofilms and Microbiomes 2023 9:1, 9(1), 1–10. https://doi.org/10.1038/s41522-023-00376-6
-
Gvazava, N., Konings, S. C., Cepeda-Prado, E., Skoryk, V., Umeano, C. H., Dong, J., Silva, I. A. N., Ottosson, D. R., Leigh, N. D., Wagner, D. E., & Klementieva, O. (2023). Label-Free High-Resolution Photothermal Optical Infrared Spectroscopy for Spatiotemporal Chemical Analysis in Fresh, Hydrated Living Tissues and Embryos. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.3c08854
-
Petrlova, J., Hartman, E., Petruk, G., Lim, J. C. H., Adav, S. S., Kjellström, S., Puthia, M., & Schmidtchen, A. (2023). Selective protein aggregation confines and inhibits endotoxins in wounds: Linking host defense to amyloid formation. iScience, 26(10). https://doi.org/10.1016/j.isci.2023.107951
-
Kommaddi, R. P., Verma, A., Muniz-Terrera, G., Tiwari, V., Chithanathan, K., Diwakar, L., Gowaikar, R., Karunakaran, S., Malo, P. K., Graff-Radford, N. R., Day, G. S., Laske, C., Vöglein, J., Nübling, G., Ikeuchi, T., Kasuga, K., & Ravindranath, V. (2023). Sex difference in evolution of cognitive decline: studies on mouse model and the Dominantly Inherited Alzheimer Network cohort. Translational Psychiatry, 13(1), 1–12. https://doi.org/10.1038/s41398-023-02411-8
-
Ornithopoulou, E., Åstrand, C., Gustafsson, L., Crouzier, T., & Hedhammar, M. (2023). Self-Assembly of RGD-Functionalized Recombinant Spider Silk Protein into Microspheres in Physiological Buffer and in the Presence of Hyaluronic Acid. ACS Applied Bio Materials, 6(9), 3696–3705. https://doi.org/10.1021/acsabm.3c00373
-
Piroska, L., Fenyi, A., Thomas, S., Plamont, M.-A., Redeker, V., Melki, R., & Gueroui, Z. (2023). α-Synuclein liquid condensates fuel fibrillar α-synuclein growth. Science Advances, 9(33), eadg5663. https://doi.org/10.1126/sciadv.adg5663
-
Prater, C., Bai, Y., Konings, S. C., Martinsson, I., Swaminathan, V. S., Nordenfelt, P., Gouras, G., Borondics, F., & Klementieva, O. (2023). Fluorescently Guided Optical Photothermal Infrared Microspectroscopy for Protein-Specific Bioimaging at Subcellular Level. Journal of Medicinal Chemistry, 66(4), 2542–2549. https://doi.org/10.1021/acs.jmedchem.2c01359
2022
-
Cascella, R., Banchelli, M., Abolghasem Ghadami, S., Ami, D., Gagliani, M. C., Bigi, A., Staderini, T., Tampellini, D., Cortese, K., Cecchi, C., Natalello, A., Adibi, H., Matteini, P., & Chiti, F. (2022). An in situ and in vitro investigation of cytoplasmic TDP-43 inclusions reveals the absence of a clear amyloid signature. Annals of Medicine, 55(1), 72–88. https://doi.org/10.1080/07853890.2022.2148734
-
Choi, M. L., Chappard, A., Singh, B. P., Maclachlan, C., Abramov, A. Y., Horrocks, M. H., & Gandhi, S. (2022). Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity. Nature Neuroscience. https://doi.org/10.1038/s41593-022-01140-3
-
de Luca, C. M. G., Consonni, A., Cazzaniga, F. A., Bistaffa, E., Bufano, G., Quitarrini, G., Celauro, L., Legname, G., Eleopra, R., Baggi, F., Giaccone, G., & Moda, F. (2022). The alpha-synuclein RT-QuIC products generated by the olfactory mucosa of patients with parkinson’s disease and multiple system atrophy induce inflammatory responses in SH-SY5Y cells. Cells, 11(1). https://doi.org/10.3390/cells11010087
-
Wood, J. I., Wong, E., Cummings, D. M., Hardy, J., Correspondence, F. A. E., Joghee, R., Balbaa, A., Vitanova, K. S., Stringer, K. M., Vanshoiack, A., Phelan, S.-L. J., Launchbury, F., Desai, S., Tripathi, T., Rg Hanrieder, J., & Edwards, F. A. (2022). Plaque contact and unimpaired Trem2 is required for the microglial response to amyloid pathology. Cell Reports. https://doi.org/10.1016/j.celrep.2022.111686
-
Petrlova, J., Samsudin, F., Bond, P. J., & Schmidtchen, A. (2022). SARS-CoV-2 spike protein aggregation is triggered by bacterial lipopolysaccharide. FEBS Letters. https://doi.org/10.1002/1873-3468.14490
-
Morten, M. J., Sirvio, L., Rupawala, H., Hayes, E. M., Franco, A., Radulescu, C., Ying, L., Barnes, S. J., Muga, A., & Ye, Y. (2022). Quantitative super-resolution imaging of pathological aggregates reveals distinct toxicity profiles in different synucleinopathies. PNAS. https://doi.org/10.1073/pnas
-
Hochmair, J., Exner, C., Franck, M., Dominguez‐Baquero, A., Diez, L., Brognaro, H., Kraushar, M. L., Mielke, T., Radbruch, H., Kaniyappan, S., Falke, S., Mandelkow, E., Betzel, C., & Wegmann, S. (2022). Molecular crowding and RNA synergize to promote phase separation, microtubule interaction, and seeding of Tau condensates. The EMBO Journal, 41(11). https://doi.org/10.15252/EMBJ.2021108882
-
Kumar, S. T., Mahul-Mellier, A. L., Hegde, R. N., Rivière, G., Moons, R., de Opakua, A. I., Magalhães, P., Rostami, I., Donzelli, S., Sobott, F., Zweckstetter, M., & Lashuel, H. A. (2022). A NAC domain mutation (E83Q) unlocks the pathogenicity of human alpha-synuclein and recapitulates its pathological diversity. Science Advances, 8(17), 44. https://doi.org/10.1126/SCIADV.ABN0044
-
Lackie, R. E., de Miranda, A. S., Lim, M. P., Novikov, V., Madrer, N., Karunatilleke, N. C., Rutledge, B. S., Tullo, S., Brickenden, A., Maitland, M. E. R., Greenberg, D., Gallino, D., Luo, W., Attaran, A., Shlaifer, I., del Cid Pellitero, E., Schild-Poulter, C., Durcan, T. M., Fon, E. A., … Prado, M. A. M. (2022). Stress-inducible phosphoprotein 1 (HOP/STI1/STIP1) regulates the accumulation and toxicity of α-synuclein in vivo. Acta Neuropathologica. https://doi.org/10.1007/s00401-022-02491-8
2021
- Graziotto, M. E., Adair, L. D., Kaur, A., Vérité, P., Ball, S. R., Sunde, M., Jacquemin, D., & New, E. J. (2021). Versatile naphthalimide tetrazines for fluorogenic bioorthogonal labelling. RSC Chemical Biology, 2(5), 1491–1498. https://doi.org/10.1039/D1CB00128K
- Michno, W., Stringer, K. M., Enzlein, T., Passarelli, M. K., Escrig, S., Vitanova, K., Wood, J., Blennow, K., Zetterberg, H., Meibom, A., Hopf, C., Edwards, F. A., & Hanrieder, J. (2021). Following spatial Aβ aggregation dynamics in evolving Alzheimer’s disease pathology by imaging stable isotope labeling kinetics. Science Advances, 7(25), 4855–4871. https://doi.org/10.1126/SCIADV.ABG4855/
-
Aubi, O., Prestegård, K. S., Jung-KC, K., Shi, T. J. S., Ying, M., Grindheim, A. K., Scherer, T., Ulvik, A., McCann, A., Spriet, E., Thöny, B., & Martinez, A. (2021). The Pah-R261Q mouse reveals oxidative stress associated with amyloid-like hepatic aggregation of mutant phenylalanine hydroxylase. Nature Communications 2021 12:1, 12(1), 1–16. https://doi.org/10.1038/s41467-021-22107-1
-
Frey, B., AlOkda, A., Jackson, M. P., Riguet, N., Duce, J. A., & Lashuel, H. A. (2021). Monitoring alpha-synuclein oligomerization and aggregation using bimolecular fluorescence complementation assays: What you see is not always what you get. Journal of Neurochemistry, 157(4), 872–888. https://doi.org/10.1111/jnc.15147
-
Frottin, F., Pérez-Berlanga, M., Hartl, F. U., & Hipp, M. S. (2021). Multiple pathways of toxicity induced by C9orf72 dipeptide repeat aggregates and G4C2 RNA in a cellular model. ELife, 10. https://doi.org/10.7554/eLife.62718
-
Rimal, S., Li, Y., Vartak, R., Geng, J., Tantray, I., Li, S., Huh, S., Vogel, H., Glabe, C., Grinberg, L. T., Spina, S., Seeley, W. W., Guo, S., & Lu, B. (2021). Inefficient quality control of ribosome stalling during APP synthesis generates CAT-tailed species that precipitate hallmarks of Alzheimer’s disease. Acta Neuropathologica Communications, 9(1), 1–24. https://doi.org/10.1186/s40478-021-01268-6
-
Hofbauer, D., Mougiakakos, D., Mackensen, A., Ricagno, S., & Bruns, H. (2021). B2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression. Immunity. https://doi.org/10.1016/j.immuni.2021.07.002
-
Johari, M., Sarparanta, J., Vihola, A., Jonson, P. H., Savarese, M., Jokela, M., Torella, A., Piluso, G., Said, E., Vella, N., Cauchi, M., Magot, A., Magri, F., Mauri, E., Kornblum, C., Reimann, J., Stojkovic, T., Romero, N. B., Luque, H., Huovinen, S., Lahermo, P., Donner, K., Comi, G. P., Nigro, V., Hackman, P., & Udd, B. (2021). Missense mutations in small muscle protein X-linked (SMPX) cause distal myopathy with protein inclusions. Acta Neuropathologica, 0123456789. https://doi.org/10.1007/s00401-021-02319-x
2020
-
Mahul-Mellier, A. L., Burtscher, J., Maharjan, N., Weerens, L., Croisier, M., Kuttler, F., Leleu, M., Knott, G. W., & Lashuel, H. A. (2020). The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 117(9), 4971–4982. https://doi.org/10.1073/pnas.1913904117
-
Ghosh, A., Mizuno, K., Tiwari, S. S., Proitsi, P., Gomez Perez-Nievas, B., Glennon, E., Martinez-Nunez, R. T., & Giese, K. P. (2020). Alzheimer’s disease-related dysregulation of mRNA translation causes key pathological features with ageing. Translational Psychiatry, 10(1), 1–18. https://doi.org/10.1038/s41398-020-00882-7
2019
-
Page, M. J., Thomson, G. J. A., Nunes, J. M., Engelbrecht, A. M., Nell, T. A., de Villiers, W. J. S., de Beer, M. C., Engelbrecht, L., Kell, D. B., & Pretorius, E. (2019). Serum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-39056-x
-
Adams, B., Nunes, J. M., Page, M. J., Roberts, T., Carr, J., Nell, T. A., Kell, D. B., & Pretorius, E. (2019). Parkinson’s disease: A systemic inflammatory disease accompanied by bacterial inflammagens. Frontiers in Aging Neuroscience, 10(JUL), 1–17. https://doi.org/10.3389/fnagi.2019.00210
-
Frottin, F., Schueder, F., Tiwary, S., Gupta, R., Körner, R., Schlichthaerle, T., Cox, J., Jungmann, R., Hartl, F. U., & Hipp, M. S. (2019). The nucleolus functions as a phase-separated protein quality control compartment. Science, 365(6451), 342–347. https://doi.org/10.1126/science.aaw9157
2018
-
de Waal, G. M., Engelbrecht, L., Davis, T., de Villiers, W. J. S., Kell, D. B., & Pretorius, E. (2018). Correlative Light-Electron Microscopy detects lipopolysaccharide and its association with fibrin fibres in Parkinson’s Disease, Alzheimer’s Disease and Type 2 Diabetes Mellitus. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-35009-y
-
Pretorius, E., Page, M. J., Hendricks, L., Nkosi, N. B., Benson, S. R., & Kell, D. B. (2018). Both lipopolysaccharide and lipoteichoic acids potently induce anomalous fibrin amyloid formation: Assessment with novel Amytracker TM stains. Journal of the Royal Society Interface, 15(139). https://doi.org/10.1098/rsif.2017.0941
2017
-
Sehlin, D., Fang, X. T., Meier, S. R., Jansson, M., & Syvänen, S. (2017). Pharmacokinetics, biodistribution and brain retention of a bispecific antibody-based PET radioligand for imaging of amyloid-β. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-17358-2
-
Pretorius, E., Page, M. J., Engelbrecht, L., Ellis, G. C., & Kell, D. B. (2017). Substantial fibrin amyloidogenesis in type 2 diabetes assessed using amyloid-selective fluorescent stains. Cardiovascular Diabetology, 16(1), 1–14. https://doi.org/10.1186/s12933-017-0624-5